Please check that thi	s question paper contains	9_ questions and	d 2	printed pages within first ten mini	ıtes.
	EVE	AING	ra-no și a	Ob. A Relation	
[Total No. of Ques Uni. Roll No	0 4 30	L 2022	[Total N	Io. of Pages: .92]	
		ech. (Batch 2018	onward)	OT, Provedin	
	Subject Code:		-111		
Datail of allowed		ulator is NotAllo	1		
Time Allowed: 03	codes/charts/tables etc. Hours			Max. Marks: 60	
NOTE:					
2) Part-C has	B are compulsory Two Questions Q8 and (g data may be assumed a		ıpulsory,	but with internal choice	
	Part - A			[Marks: 02 each]	
Q1.	na (31.5) mag bill to bri.				
on having become self of	State and prove first shif	ting property of	Laplace	Transform.	
b)	Write the formula for Fo	urier integral of	f(x).		
(a < c)	Define order of an eleme	ent of a group.		holf self .Eg	
d)	State Modulation theorem	m of Fourier Tra	nsform.		
e)	Prove that the propositio	n $pV \sim q$ is a ta	utology.		
f)	Prove that in a distributi	ive Lattice, if an	elemen	t has a complement then this	
imelen	complement is unique.			Solve the	

Part - B [Marks: 04 each]

- Q2. State and prove Convolution theorem for Inverse Laplace Transform.
- Q3. Evaluate the following:

(i)
$$L^{-1}(\frac{s+1}{(s^2+s+1})$$
 (ii) $L(\sqrt{t}e^{3t})$

- Q4. Find Fourier Transform of $f(x) = \begin{cases} x : |x| \le a \\ 0 ; |x| > a \end{cases}$.
- Q5. Use truth table to show that $p \Rightarrow q$ is logically equivalent to $\sim p \ V \ q$.

EVENING

0 4 JUL 2022

- Q6. A Relation R on the set Z of all integers as follows:
 - m R n if and only if (m + n) is even for all m, $n \in Z$. Is R a partial order relation? Justify your answer with a suitable example.
- Q^{7} . Prove that the set $\{0,1,2,3,4\}$ is a finite abelian group under addition modulo 5.

Part - C

[Marks: 12 each]

- Q8. (a) Prove that a subgroup H of a group G is normal if and only if $g^{-1}hg \in H$, for all $h \in H$, $g \in G$. (6)
 - (b) Prove that the order of each subgroup of a finite group is a divisor of the order of the group. (6)

OR

- (a) Consider the POSET A = ({1,2,3,4,6,9,12,18,36}, /). Find the greatest lower bound and the least upper bound of the sets {6,18} and {4, 6, 9}. (6)
- (b) Define a Lattice with a suitable example and Prove that the product of two Lattices is a Lattice. (6)
- Q9. Use Fourier cosine transform to solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, x > 0, t > 0 subject to the conditions $u_x(0,t) = 0$, u(x,t) is bounded and $u(x,0) = \begin{cases} x \\ 0 \end{cases}$; $0 \le x \le 1$ x > 1.

OR

Solve the following differential equation using Laplace transform:

$$2\frac{d^2y}{dt^2} - \frac{dy}{dt} - y = cost, \ y(0) = 1, \ y'(0) = 0.$$